Name
Moriod \quad Date Pre-AP Chemistry
A. Mole Calculations. You will need a periodic table to look up molecular weights. Do each type of calculation until you feel that you could do it without looking at notes. If you are very comfortable with a problem, skip down to harder ones. The answers will be on the web.

1. \qquad How many moles of Na are in 42 g of Na ?
2. \qquad How many moles of O are in 8.25 g of O ?
3. \qquad How much does 2.18 mol of Cu weigh?
4. \qquad What is the mass of 0.28 mol of iron?
5. \qquad How many atoms are in 7.2 mol of chlorine?
6. \qquad How many atoms are in 36 g of bromine?
7. \qquad How many moles are in 1.0×10^{9} atoms?
8. \qquad What is the mass of 1.20×10^{25} atoms of sulfur?
9. \qquad How many moles of CO molecules are in 52 g of CO ?
10. \qquad How many moles of $\mathrm{C}_{2} \mathrm{H}_{6}$ are in 124 g ?
11. \qquad How many moles of CCl_{4} are there in 56 g ?
12. \qquad How much does 2.50 mol of $\mathrm{H}_{2} \mathrm{SO}_{4}$ weigh?
13. \qquad How much does 0.25 mol of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ weigh?
14. \qquad How many molecules are there in 52 g of CO ?
15. \qquad How many formula units are in $22.4 \mathrm{~g} \mathrm{SnO}_{2}$?
16. \qquad How many molecules are in $116 \mathrm{~g} \mathrm{CCl}_{4}$?
17. \qquad What is the mass of 3.01×10^{23} formula units of $\mathrm{Fe}_{2} \mathrm{O}_{3}$?
18. \qquad What is the mass of 1.2×10^{25} molecules of CO ?
19. \qquad How many O atoms are in 1.25 mol of SO_{2} ?
20. \qquad How many moles of O atoms do you have when you have $1.20 \times 10^{25} \mathrm{~N}_{2} \mathrm{O}_{5}$ molecules?
21. \qquad How many formula units are in 5.33 mol of CuCl_{2} ?
22. \qquad How many copper atoms are in 5.33 mol of CuCl_{2} ?
23. \qquad How many moles of Cl atoms are in 5.33 mol of CuCl_{2} ?

Calculate the percent composition of the compounds that are formed from these reactions:
I. 9.03 g of Magnesium combine completely with 3.48 g of Nitrogen.
2. 29.0 g of Argon combine completely with 4.30 g of Sulfur.
3. 222.6 g of Sodium combine completely with 77.4 g of Oxygen.

Calculate the percent composition of each of the following compounds:
4. $\mathrm{C}_{2} \mathrm{H}_{6}$
5. NaHSO_{4}
6. $\mathrm{Ca}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}$
7. HCN
8. $\mathrm{H}_{2} \mathrm{O}$

Calculate the mass of the element in the given mass of compound:
9. Mass of Hydrogen in $350 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{6}$
10. Mass of Oxygen in 20.2 g of NaHSO_{4}

1I. Mass of Hydrogen in 124 g of $\mathrm{Ca}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}$
12. Mass of Nitrogen in 378 g HCN

Answers

1. 1.8 mol Na
2. 0.516 mol O
3. 139 g Cu
4. 16 g Fe
5. $4.3 \times 10^{24} \mathrm{Cl}$ atoms
6. $2.7 \times 10^{23} \mathrm{Br}$ atoms
7. $1.7 \times 10^{-15} \mathrm{~mol}$
8. 639 g S
9. $\quad 1.9 \mathrm{~mol}$
10. 4.12 mol
11. 0.36 mol
12. 245 g
13. 39.9 g
14. 1.1×10^{24} molecules
15. 8.95×10^{22} formula units
16. 4.54×10^{23} molecules
17. $79.9 \mathrm{~g} \mathrm{Fe}_{2} \mathrm{O}_{3}$
18. $5.6 \times 10^{2} \mathrm{~g} \mathrm{CO}$
19. $1.51 \times 10^{24} \mathrm{O}$ atoms
20. $\quad 99.7 \mathrm{~mol} \mathrm{O}$
21. 3.21×10^{24} formula units
22. $3.21 \times 10^{24} \mathrm{Cu}$ atoms
23. $\quad 10.7 \mathrm{~mol}$ of Cl atoms
24. $0.10 \mathrm{~mol} \mathrm{CuCl}_{2}$
25. $3.79 \times 10^{24} \mathrm{O}$ atoms
26. $\quad 6.79 \times 10^{23} \mathrm{H}$ atoms

The Percent Composition Worksheet

Calculate the percent composition of the compounds that are formed from these reactions:

1. 9.03 g of Magnesium combine completely with 3.48 g of Nitrogen.
2. 29.0 g of Argon combine completely with 4.30 g of Sulfur.

$$
\begin{array}{|l|l|}
\hline 72.2 \% \mathrm{Mg} & 27.8 \% \mathrm{~N} \\
\hline
\end{array}
$$

3. 222.6 g of Sodium combine completely with 77.4 g of Oxygen.

$$
\begin{array}{|l|l|}
\hline 74.29 . \mathrm{Na} & 25.8 \% \mathrm{O} \\
\hline
\end{array}
$$

Calculate the percent composition of each of the following compounds:
4. $\mathrm{C}_{2} \mathrm{H}_{6}$

$80.0 \% \mathrm{C}$	$20.0 \% \mathrm{H}$

5. NaHSO_{4}

$19.0 \% \mathrm{Na}$	$0.83 \% \mathrm{H}$	$26.5 \% \mathrm{~s}$	$52.8 \% 0$

6. $\mathrm{Ca}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}$

$25.4 \% \mathrm{Ca}$	$30.4 \% \mathrm{C}$	$3.8 \% \mathrm{H}$	$40.5 \% \mathrm{O}$

7. HCN

$3.7 \% \mathrm{H}$	$44.4 \% \mathrm{C}$	$51.97 \% \mathrm{~N}$

8. $\mathrm{H}_{2} \mathrm{O}$

$11.1 \% \mathrm{H}$	$88.97 \% 0$

Calculate the mass of the element in the given mass of compound:
9. Mass of Hydrogen in $350 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{6}$
10. Mass of Oxygen in 20.2 g of NaHSO_{4}

$$
70.9 \quad \mathrm{H}
$$

11. Mass of Hydrogen in 124 g of $\mathrm{Ca}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}$

12. Mass of Nitrogen in 378 g HCN

13. Mass of Oxygen in $100 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$

Finder

